Showing posts with label Education. Show all posts
Showing posts with label Education. Show all posts

Tuesday 4 April 2017

ARE TRAITS WORTH THE EXPENSE?

TRAITS CAN BE WORTH THE MONEY, BUT PROFITABILITY DEPENDS UPON PEST PRESSURE AND OTHER FACTORS.

Farmers quickly gobbled up corn and soybean transgenic traits when federal regulators first approved them in the 1990s. Initially, those traits zapped weeds and insects with nary a hitch.  
For the most part, genetically modified traits still work. “Some have struggled with resistance issues, but these traits do what they say they will,” says Joe Lauer, University of Wisconsin (UW) Extension agronomist. “Conversely, they are expensive, but with all the licensing and regulations, companies have to make a buck, too.”
Therein lies the rub. As a rule, traited hybrids cost more money than conventional ones.

SO ARE THEY WORTH IT?

Superficially, the decision seems simple. “Buy the traits you need,” says Lauer.
If you farm in east-central Illinois where corn rootworm can swarm cornfields like flies on a rotting animal carcass, a rootworm trait needs to be part of your rootworm-management program. If resistance to one trait has developed, another trait in a pyramid package will do, coupled with tools like crop rotation and a soil-applied insecticide.
Meanwhile, farmers in northern Wisconsin who rotate alfalfa and soybeans every so often with their corn, where rootworm is seldom a problem, likely don’t need a corn rootworm trait. That’s because by themselves, traits don’t increase yields.
Since corn traits hit the market 20 years ago, U.S. annual corn yield gains have clipped along at around 2 bushels per acre. Compare that with the mid-1950s yield gain from .8 bushels to 1.9 bushels per acre as a result of widespread use of hybrid corn, pesticides like 2,4-D, commercial nitrogen fertilizer, and on-farm mechanization.
Although traits have maintained the annual rate of U.S. corn yield gain, they haven’t increased it, says Bob Nielsen, Purdue University Extension agronomist.
“Current transgenic traits protect yields,” adds Lauer. Sill, yields won’t increase if pests are not present.
Seed price, though, complicates matters. Hybrids with trait packages don’t always cost more than conventional hybrids. Often, though, they do.
“With a $100- to $200-per-bag hybrid difference, I question if you can make up that difference through traits,” says Lauer.

YIELD IMPACT

Lauer bases these findings on the Wisconsin Corn Hybrid Performance Trials dating back to 1973. Each year, this trial tests more than 500 hybrids at 14 sites around Wisconsin with the goal of providing unbiased performance comparisons of hybrid seed corn for the state’s farmers. Lauer began including traited hybrids in the trials when they debuted in 1996. Along with UW agricultural economists Guanming Shi and Jean-Paul Chavas, Lauer conducted a statistical analysis showing that yields of hybrids with genetically modified traits varied widely.
In most cases, higher yields did result with traited hybrids. That was particularly true with European corn borer (ECB)-resistant hybrids. On average, ECB-resistant hybrids outyielded conventional hybrids by more than 6 bushels per acre.
“Hybrids with this trait had no yield drag,” says Lauer. “It (the ECB trait) did well right from the start.”
That’s not the case with corn rootworm traits, though. On average, yields of hybrids with these traits trailed the trial average by 12 bushels per acre.
“As a group, growers need to be careful with rootworm-resistant hybrids,” says Lauer. “Some years they do well, but most years, they don’t.”
Stacked traits helped. One example is a triple stack in which a herbicide-tolerant hybrid is teamed with traits that resist ECB and corn rootworm. In these cases, yields were 2 to 3 bushels per acre higher than those of conventional ones.
Still, that’s good, isn’t it?
On a yield basis, it’s questionable, especially if you’ve paid a hefty premium for the trait package.
“Yield increases have been underwhelming,” says Lauer.
Let’s say you have a triple-stack hybrid that gleans a 10-bushel-per-acre corn yield edge over a conventional one. With $3-per-bushel corn, you can pay up to $30 per acre more in seed costs – or $69 a bag. (This assumes one bag plants 2.3 acres.) If seed costs more than that, be wary.
“The bottom line is that if there is a price difference between hybrid A and B that is greater than $75 per bag, be careful about buying the more expensive hybrid,” says Lauer.

REDUCING RISK

There’s more to your seed decision than yields, though. You’d probably have steam churning out of your ears akin to the cartoon character Yosemite Sam if a hybrid that yielded 250 bushels per acre dropped to 100 bushels the next year.
That’s another perk of traits, as they can reduce this variability. The UW scientists found that even if transgenes produced only slightly higher yields in hybrids, they lower year-to-year yield variability. In a sense, this mimics a slight yield increase. Shi, Chavas, and Lauer found the downside risk of lower pest pressure mimicked a 0.8- to 4.2-bushel-per-acre yield spike, depending on the hybrid.
“Reducing yield extremes is one route in which transgenics can help,” says Lauer.
Lower variability that translates into more consistent yields between years eases agronomic and economic farm planning.
This variance reduction is most pronounced in low-yielding environments, says Lauer. The UW trials show that grain yield rises among lower yielding hybrids with transgenic traits compared to conventional hybrids.
 
Thus, the more transgenes a hybrid contains, the lower the variance, he says.

PESTS STILL EXIST

Pest pressure also can determine the trait payoff.  
“Last year, we didn’t see a lot of rootworm pressure in the heart of the Corn Belt,” says Jeff Hartz, director of marketing for Wyffels Hybrids. “That can push some growers toward a double-stack trait (herbicide-tolerant and European corn borer-resistant).”
Just don’t get caught. Corn rootworm still lurks in cornfields, and it can slice yields.
In 2016, the Iowa Soybean Association (ISA) On-Farm Network found many eastern Iowa fields had high beetle numbers. If eggs laid last summer hatch this year, it could set the stage for infestations. In some fields last summer, beetle numbers were more than seven times the threshold for adult beetle numbers.
Ditto for ECB. Although it’s almost vanished, ECB can overwinter on 200 types of plants.
“It is still there,” says Hartz. In eastern Iowa, there have been cases where ECB has sliced non-GMO yields by 30 to 40 bushels per acre, he says.
Hybrids high in traits like SmartStax, which contains eight herbicide-tolerant and insect-resistant traits, will be under scrutiny by farmers for 2017, says Hartz.
“It will be a harder sell in 2017,” he says. “But farmers also have to make sure they don’t cut too many corners.”
In the case of Noah Hultgren and his family, who farm near Raymond in central Minnesota, a diverse rotation (sugar beets-kidney beans-sweet corn-field corn-soybeans) has helped keep insects at bay.
“We have not had to face as many issues as some,” he says. “We have had some glyphosate-resistant weeds, though.”
To counter them, the Hultgrens have planted Liberty Link (glufosinate-tolerant) hybrids on some corn acres before planting LibertyLink soybeans for the first time in 2016. In their Roundup Ready sugar beets, they also have resorted to some cultivation and hand weeding due to glyphosate-resistant weeds.
In the more intensive rotations of the Corn Belt, though, resistance has been more severe.
“We’ve considered cutting down or going without traits, but the risk of yield loss is still too great,” says Ron Moore, a Roseville, Illinois, farmer. In his own neighborhood, ECB infestations have occurred in non-ECB-resistant corn and caused yield losses.
Moore’s concern also extends to weeds. In 2017, Moore plans to plant some Roundup Ready 2 Xtend soybeans accompanied by an approved dicamba herbicide formulation.
“We are seeing some herbicide-resistant weeds,” he says. “Preventive treatments that prevent weed escapes are cheaper than rescue treatments. Traits cost money, but the benefits are more than the cost of seed,” he explains.
In some cases, trait use transcends agronomics. “We have producers who have 50,000- to 60,000-acre grain farms in western Canada,” says Jay Bradshaw, president of Syngenta Canada. “They want technology to control disease, weeds, and insects. But when you talk more with them, it is also about time management. There are fewer people available to do on-farm work. Traits can help them manage their farms.”

SEED FIRST

Think of buying seed like buying a pickup. “You have different options, but at the start, you focus on the truck itself,” says Cole Hansen, portfolio marketing leader for Mycogen Seeds. “You can buy all the traits there are, but it won’t mean increased yield without pest pressure. Selecting the correct hybrid for that individual farm is key before addressing pest concerns.”
Low corn and soybean prices have caused seed firms to ramp up offerings of less-expensive seed.
“We have expanded our trait choices, which include lower-priced options,” says Duane Martin, Syngenta commercial traits lead. When pest pressure is high, stacked traits with multiple modes of action are a sound agronomic choice. Where pest pressure is low, though, a single trait can provide the needed protection, he says.
“With margins like they are, I think farm managers can make a difference by employing field-by-field insect infestation history and by putting the best fitting soybean varieties and corn hybrids on those acres,” he adds. “There are cases where growers want to focus more on genetics and less on traits, and vice versa. We want to make sure those choices are available to growers to help make sound and cost-effective trait decisions.”

TRANSGENIC WILD CARD

Transgenes inserted in seed offerings can often be a yield wild card. “There can be a tremendous yield difference when we switch transgenes in and out of a hybrid,” says Joe Lauer, University of Wisconsin Extension agronomist. Swings of 20 bushels per acre or more have occurred either way between conventional and assorted trait packages in Wisconsin Corn Hybrid Performance Trials.
“There will be interaction between transgenes and underlying genetics,” he says. “The point is, there are yield interactions (including yield drag) that go on. Within trait technologies, there are good and bad hybrids. Each hybrid has to stand on its own.”

MULTIPLE LOCATIONS KEY HYBRID SELECTION

Each year, you spend time deciding whether or not to use products promising to coax just a few more bushels per acre out of your corn. Just don’t let these distract you from spending time on the decisions like seed that can literally cost you your family’s farm.
Each year, the Wisconsin Corn Hybrid Performance Trials test more than 500 hybrids at 14 Wisconsin sites with the goal of providing unbiased performance comparisons of hybrid seed corn for the state’s farmers. Year in and year out, there’s a 72-bushel-per-acre difference within relative maturities between top and bottom yielding varieties, says Joe Lauer, University of Wisconsin Extension agronomist.
So how do you sort out the diamonds from the dogs?
“Use independent yield-trial data and multilocation averages to pick hybrids,” says Lauer. Picking multiple locations is more accurate than on-farm trials, he says.
On-farm trials do have merit. A random hybrid pick has a 50:50 chance of beating the trial average. Meanwhile, planting the best hybrids from on-farm trials can beat trial averages 67% of the time.
However, findings in the Wisconsin performance trials show hybrid selection with a multi-location assessment can beat trial averages 71% to 74% of the time. The more locations you have, the better the odds have been of hybrids beating the trial average, he adds.
Gleaning these results can enable you to concentrate on the top-performing hybrids. “Don’t care about all hybrids, just care about the top-yielding top 20%,” he says.
Look at individual hybrids, too, whether or not they are traited. Lauer notes when traited hybrids were first introduced in 1996, their yields eclipsed those of conventional hybrids.
“But in the last three to five years, conventional hybrids have come back,” says Lauer. We still always find conventional hybrids in the top 10 of the same relative maturities.”
Don’t be distracted by a hybrid family. Seed companies will often sell a new hybrid as belonging to an outstanding family. Like your own family members, though, there can be stark differences among them.
“We see a big difference among individual (trait) technology packages within a hybrid family,” he says. “Each one has strengths and weaknesses. Try to measure just genetics. Hybrids within a family are not the same.”

Monday 3 April 2017

12 OVERLOOKED PREPLANTING MAINTENANCE TASKS

Take a day, maybe two, this spring to buy yourself some extra planting season insurance – in the form of preventive maintenance.
You are probably already tending to those common pre-planting chores such as calibrating seed meters, changing the oil in the engine, replacing sweeps on the field cultivator, and the like.
Yet, it’s what you often overlook in your preseason preparations (a dead battery, the engine on a transfer pump that won’t start, a closing wheel bearing that seizes, or a hydraulic hose that blows) that could flare up into a breakdown in a month or so.
Below are 12 of the most-often overlooked preseason maintenance areas and how to get in tip-top shape before planting.
1. Planter closing wheels
Of all planter components, closing (packing) wheels are the most-often overlooked preseason maintenance chore, says planter expert Kevin Kimberley. “They have a huge impact on seed-to-soil contact, which affects rapid emergence,” he points out. 
Kimberley recommends examining the closing wheel assembly for looseness where its arms connect to the row unit. “Grab the assembly and move it up and down and from side to side to check for looseness,” he says. “This could indicate worn bearings, bushings, or cams.”
Also, spin closing disks (if your planter is so equipped) and press wheels, listening for noise, which indicates worn bearings. Finally, examine the assembly to determine if it is bent or cracked. “Planting on a curve or on hillsides can put pressure on mountings, causing undue wear on one side,” Kimberley says.  

SPRING PLANTER CHECKLIST - PART 1

2. Drive belts
Brent Oman doubts it would take you more than an hour or so to conduct a key inspection that could save you a day of planting. Inspecting drive belts now – whether they are in use on a tractor engine or a fluid pump – could detect an impending belt blowout that would stop planting for hours or even the day, as you search for a replacement and tackle the often-tedious task of taking the belt assembly apart.
The Gates Corporation engineer offers this belt-inspection guide. “A great general rule is to recall what a belt looks like new as a comparison,” Oman says. “Give them a squeeze. They should deflect and then spring back. A belt that is hard as a rock should be replaced. What has happened in this case is that rubber in the belt compounding has leached out, mostly likely due to high operating heat. It’s the rubber that gives the belt a lot of its needed flexibility.
Here are six other signs that warn when a belt needs to be replaced.

  • Sidewall glazing. This warning sign indicates the belt has been slipping excessively. Once a belt has become glazed, it will continue to slip – even if its tension is increased. 
  • Cuts and unusual wear patterns. Oman points out that an unusual wear pattern is likely caused by worn, misaligned, or damaged pulley sheaves. If you see this damage, the pulley may need to be replaced, as well.
  • Damage spots. Oman explains that most damage is caused by “the freak accident, such as a piece of debris coming in contact with the belt. Foreign objects getting between the belt and pulley sheaves often damage both belt teeth and internal tensile cords. If the damage on the belt is widespread, look around and see what might be causing it,” he says.
  • Flaking, sticky or swollen belt surfaces. This is caused by oil or chemical contamination, such as fertilizer or herbicides.
  • Cracks radiating from the bottom of the belt vee to the top.
  • Frayed spots.

Oman also recommends taking time to check belt tension using a spring scale-type tester. “Improper tension and misalignment are the two most common causes of belt deterioration,” he says. This simple device (retails for around $15) uses a sliding rubber O-ring that reads deflection force. Compare that reading to the recommended deflection force at gates.com/drivedesign
3. Planter drive components
Every component on a planter drive system (including the transmission) should be examined. That includes chains or cables, sprockets, idlers, clutches, and their bushings or bearings. 
“Replace overly rusty, stiff, or kinked chains,” Kimberley says. “A faulty chain can set up a vibration that affects meter accuracy, especially for hard-to-plant seed sizes.” 
On cable drives, remove the unit and turn the cable to see if it’s rotating smoothly. 
4. Implement tires
Implement tires are the unsung heroes of the planting season. Key to maintaining tillage or planting depth in the field and then carting massive weights down the road, they don’t require much more maintenance than just an inflation check prior to and during the season, says Wayne Birkenholtz of Firestone Tire. Make it a habit to check inflation regularly during the season. Proper inflation greatly prolongs an implement tire’s life, he adds. 
Underinflation can cause the tire to wear rapidly and unevenly, particularly in the shoulder area, eventually leading to cracks in the carcass. Overinflation, on the other hand, creates an underdeflected tire leading to increased wear on the center of the tire. Moreover, the tightly stretched carcass becomes more susceptible to impact breaks.
Correct inflation pays off by keeping a toolbar or an implement level in operation as well as making sure drive tires (on older planters or fertilizer applicators) are turning at the same speed, says Kevin Kimberley.
Other preseason tire tips include inspecting tires and their rims for damage. Also, lower the implement or planter and, if possible, spin the rim by hand, listening for bearing noise that can indicate a worn bearing. “Now is the time to replace a bearing that is going bad rather than in the field,” Kimberley notes. “You could also end up scoring the spindle in the process.” 
5. Air bags
Planter air bags rarely present repair issues, but their connections can spring leaks in time from vibration and hoses becoming brittle. “With the air bags inflated and with a spray bottle full of soapy water, walk down the planter and spray every connection. If bubbles appear, then you know you need to replace the hose,” Kevin Kimberley says. “The impact of a leaking connection is that the individual row unit’s ability to maintain accurate seed depth as well as good seed-to-soil contact is jeopardized.” 
6. Batteries
Sudden death syndrome isn’t restricted to soybeans. Batteries sitting in stored vehicles and machinery can suffer the same injury. In these cases, sudden death is the result of the battery’s tie (or buss) bar (connecting all of its cells together) becoming degraded (thin) and then suddenly breaking, explains SF Engine Man Ray Bohacz. 
“When this happens, all of the battery’s cells will check fine with a hydrometer, but the battery will produce 0 volts because it is broken inside.” 
Bohacz says performing a load test (conducted with a volt-ohm meter as shown below) in the winter usually reveals the tie bar becoming challenged, predicting a potential midspring sudden death. “If you do not have that ability to conduct a load test, replace any battery that is 5 years or older with a new one designed for heavy-duty use,” he urges. “Just because the engine cranks fine right now is no indicator of the internal condition of the battery. A battery with more than 14.6 volts after the surface charge is removed with a load tester is internally sulphated and is on the way out.” 
7. Small engines
Many planting days have been derailed by a small gas engine on a nurse trailer or a seed tender that doesn’t want to run, Ray Bohacz has observed. 
To avoid this frustration, the Engine Man recommends cleaning and tightening the engine carburetor and intake manifold while conducting regular maintenance such as changing oil, spark plug(s), and any air, fuel, and oil filters. 
Here are three more preseason small engine maintenance pointers: 

  • Put antiseize compound on the threads of the spark plug and dielectric compound in the boot of the wire. 
  • Inspect the engine shroud for signs of any rodent nests. If necessary, remove the sheet metal and blow out any dust from the cylinder head fins. 
  • Run the engine and adjust the carburetor mixture. Then, dose the gasoline with 1 ounce per gallon of Chevron Techron Fuel System Cleaner. Let it run for one hour at full throttle or one tank of fuel, Bohacz says. This will clean the internal passages of the carburetor and remove carbon deposits from the intake valve and piston crown. You may have to slightly retune the carburetor if the engine was carbon laden. Use gasoline treated in the same manner the first few days of planting so that everything is well cleaned out.
8. Air conditioning

Air conditioning maintenance should rank right up there with regular to-do requirements such as changing engine oil and air filters, says Engine Man Ray Bohacz.
Actually, AC filters should be pulled and cleaned or replaced every time engine filters are changed. At that same time, use compressed air to blow dust and debris from the filter cavity in addition to the system’s condenser, compressor clutch, and evaporator. Check your tractor’s operator’s manual for additional cleaning recommendations specific to your models. 
It would seem that the biggest reason for maintaining the heating, ventilation, and air conditioning (HVAC) system on a vehicle would be to maintain personal comfort.
Poor maintenance may also be costing you money, as it makes the HVAC blower work harder, ultimately shortening its lifespan and reducing efficiency. 
The HVAC system must also have an adequate level of coolant. Gone are the days when you could check it yourself and recharge the system with freon. Today’s coolant generally requires the use of a pressure gauge and professional charging. Nevertheless, there is a simple way you can look for leaks. Because it has an oil base, any coolant that leaks from a fitting or a joint will collect dirt in much the same way as a hydraulic leak. So look for dirt buildup around the hoses and components.
It’s also a good idea to clean the compressor clutch with compressed air. Check the operator’s manual for additional recommendations on your specific tractor or combine. 
Troubleshooting and diagnosing an AC System: 

  • Start engine and set to normal fast idle speed. 
  • Turn on air conditioner and set for maximum cooling with blower fan on high speed. 
  • Operate air conditioner for 5 to 10 minutes to stabilize system. 
  • Check for charge by noting sight glass if used. Note gauge readings for normal pressures. 
  • Establish whether the electrical components (thermostat, blower, and clutch) are functioning properly. 
  • Check that the air passages and ducts, refrigerant lines, hoses, compressor drive, and belts are all free. 
  • Service the unit in accordance with your operator’s manual. 
  • Take it into your machinery dealership for additional checks if troubles persist.

9. Engine coolant
“The additive package in the coolant becomes consumed from boiling cycles in the cylinder head during high thermal loading, such as pulling tillage equipment or a planter,” says SF Engine Man Ray Bohacz. “When this occurs, the coolant will allow for cylinder liner cavitation, electrolysis, and other events that can and will damage the engine.” 
For this reason, Bohacz recommends that you check engine coolant using test strips every winter. Available at automotive supply stores, test strips allow you to quickly evaluate coolant’s pH, freeze point, and, most importantly, its supplemental coolant additives (SCA) in the fluid.
Recommended levels of SCA in coolant should range between 1.5 to 3 units per gallon of coolant. Using the test strip results, add SCA based on the size of the engine’s radiator being evaluated. (Refer to your owner’s manual for additional information on SCA levels.) 
10. Electrical grounds
Nothing drives electrical systems (monitors and controllers) crazy and makes them act wacky like an errant ground circuit on a tractor, says SF Engine Man Ray Bohacz. That’s why he highly recommends removing ground wires, cleaning them, and snugging them down tight before heading to the field. “If possible, examine the eyelet or wire connection for corrosion,” he says.
Next, use a voltmeter to do a voltage drop test. “Connect the voltmeter’s positive lead to the ground and the negative lead to the battery negative. Then, evoke the circuit and have a helper read the meter,” Bohacz says. “The reading on the ground should be less than 0.20 volt. If it is greater than that, find where the high impedance is.”
11. Tillage finishing attachments
Finishing attachments, due to their location at the back of tillage implements, are often ignored in preseason maintenance chores. Kevin Kimberley warns that these attachments do wear, can break, and will have a huge effect on how well a field is prepared for planting.
“Attachments – whether they be coil tines or rolling baskets – are crucial to leveling fields and distributing residue,” he says. 
Kimberley offers a simple inspection guide to attachments that begins with examining their frame for structural breaking and mounting points for wear. Next, scan all soil-engaging components for wear.  
“Coil tine length is particularly critical to how well an implement performs. Pay attention to the tine or spike length at the front of the ranks as they wear fastest,” he says.
Regarding rolling baskets, the key here is to appraise their bearings by spinning them to determine smooth rotation. 
Finish off the chore by examining the baskets for bent rods or bars. 

PLANTER CHECKLIST - PART 2

12. Hydraulic hoses
The lifeblood of the modern planter is the hydraulic oil coursing through the hoses from the tractor. When those hoses go south, so does a planting schedule. An entire day can be blown making a repair. Even worse, what if it’s the hose that supplies the transport wheels’ cylinders on a piece of tillage implement running between fields? asks Tim Deans of Gates Corporation. 
Avoiding such disasters is really quite simple, Deans says. “Grab a pad, pen, and paint marker and walk every piece of equipment prior to the season,” he recommends. “Inspect all the components’ hydraulic systems to look for problems. Better to find and fix a problem in the shop than in the middle of a field.”
A thorough inspection of most implements shouldn’t take more than 10 minutes. Begin by always releasing the pressure in any system. Then, starting at the hitch, work your way back to the component (cylinder, orbit motor, etc.) being supplied.
Mark needed repairs such as a crushed hose or cracked fitting with the paint marker. “Use the pad and pen to write down developing problems not needing immediate repair,” Deans suggests.
During your inspection, examine the length of all hoses, looking for wetness, “which can indicate a puncture in the hose,” Deans says. “You will also want to look for abraded, cracked, crushed, or punctured hoses, all of which call for replacement.”
The last item during the hose inspection is to look for twisted or distorted hoses. Twisting misaligns the steel reinforcement of a hose, reducing its ability to withstand pressure, Deans warns. Twisting a high-pressure hose by as little as 7° can reduce its service life by as much as 90%.
The solution here is not replacement but rather loosening the hose to eliminate the twist.
“If the twist is happening during movement, such as when the implement is being folded, then use elbows and adapters to eliminate the twist,” he advises.
For a hose not showing obvious distress, check the condition of its cover by pressing a ballpoint pen into the rubber, Deans says. The pen shouldn’t permanently indent or penetrate the cover. “If it leaves a mark, then write it down in the pad for reinspection next year.” 

REDUCING THE COST OF IRRIGATION FARMING

Irrigation farming allows a nation to produce food all year round thereby doubling the amount of food produced.
However, despite the enormous available potential, the United Nations Food and Agriculture Organisation (FAO) said 80 percent of farmland worldwide is not irrigated.
High cost of irrigation equipment, ineffective and wasteful irrigation techniques have made efficient irrigation difficult for many farmers across sub-Saharan Africa.
The state of Nigeria irrigation schemes
Nigeria has huge potentials for irrigation with dam projects spread all over the country. However, most of the dams – the ones that government has invested on – are either abandoned for years or are less than 50% utilised.
 Professor Ibrahim Umar Abubakar, Director, Institute for Agricultural Research, Ahmadu Bello University Zaria, who is also an irrigation expert, shared his thoughts in an exclusive interview with Daily Trust.
“Go to any irrigation scheme like the Hadeja-Jama’are river project, the utilisation of the  project is just about 50% and this is an irrigation project that is driven by gravity -you don’t have to buy any fuel to pump in water,” he said.
 The Zobe dam in Dutsin-Ma in Katsina, which was constructed 40 years ago has very little irrigation activities going on there – the dam, water, everything is there unutilised. At the Jibiya dam also in Katsina State, the utilisation is no more than 40%.
Also, at the Bakolori Irrigation dam at Talata Mafara in Zamfara State, under the Sokoto Rima Water Project established during the Shagari regime, the area cultivated is not commensurate with the amount of water in the dam.
The Doma dam in Nasarawa State under the Lower Benue River Basin Authority is similarly underutilized.
Cost of Irrigation
Professor Abubakar stressed that the cost of irrigation is high if dams are driven by pumps. The Jibiya dam for example is not gravity based irrigation, it is pump-based, water has to be pumped by
big diesel-driven pumps such that every day the irrigation managers have to buy diesel to be able to pump water to farmers.
“This pump-based irrigation requires a lot of money to buy diesel and you know diesel in this country is very expensive,” the expert noted.
How government can design cost effective irrigation scheme
The IAR director, who has worked as expert on irrigation for many years, suggested that to reduce the cost of irrigation, the design of irrigation dams should be gravity-based so that water can flow by gravity, adding that “you don’t have to buy pumps and diesel to pump the water.”
The other way to reduce the cost of irrigation is to reduce the cost of diesel itself.
“In other countries where development is the goal of government, where government is thinking of agriculture, diesel is always half the cost of petrol. In Saudi Arabia for example, diesel is half the cost of petrol. In many other countries, the cost of diesel is always lower than the cost of petrol – do you know why – diesel is used in transporting goods and if the cost of goods is low, the economy will be better.
“Diesel is used in all agricultural heavy machinery – tractors, caterpillars – all heavy machinery. So if the cost of diesel is improved, the economy will improve,” he said.
He noted that farmers using irrigation will fare better because the cost of diesel is low and the cost of irrigation will naturally come down.
How farmers can reduce costs in their farms
Professor Abubakar, advised that another way farmers can reduce the cost of irrigation is to adopt ‘Deficit Irrigation,’ which ensures that you irrigate only at the time the crop needs water. “You just timed the critical period of water needs and irrigate only on those times. In this case, you minimize the number of irrigation you give to your crops and still achieve high yield.”
He stressed that the concept of deficit irrigation needs to be propagated to farmers because “our farmers have the tendencies to irrigate all the time. They believed that more water means more yield, which is not correct.
“The concept of more water, more yield is not correct, because if you over irrigate, it will even bring about reduction in the yield. Irrigation scheduling concept should be propagated to the farmers so that a farm should be irrigated only when the crop needs it.”
The researcher worried that most times when farmers see water, they irrigate, pointing out that the high frequency of irrigation also contributes to the high cost of irrigation.

Friday 31 March 2017

Postharvest loss alliance for nutrition

These infographics present ideas on Post harvest loss alliance for nutrition developed by the Global Alliance for Improved Nutrition (GAIN).

Wednesday 29 March 2017

MAXIMIZE NITROGEN EFFICIENCY, UPTAKE AND PROFITABILITY

Spring rain can dramatically increase nitrogen loss through leaching by pushing nitrogen lower into the soil profile. 
Instinct® and N-Serve® nitrogen stabilizers reduce leaching and extend nitrogen availability in the soil for up to eight weeks. By lengthening the time nitrogen is in the soil, Instinct and N-Serve can help your customers achieve an average revenue increase of $21 per acre.*
In most cases, these two products extend nitrogen availability six to eight weeks during critical growth points in a corn plant’s development.  
In addition to the yield and economic benefits of using Instinct or N-Serve, there are also important environmental advantages of keeping nitrogen in the soil and out of waterways. Field trials show that the active ingredient in Instinct and N-Serve effectively increase soil nitrogen retention by 28 percent while decreasing leaching into groundwater by more than 16 percent.** 
N-Serve has been used with confidence to maximize anhydrous ammonia applications for more than 40 years. Instinct, introduced in 2007, provides growers with a versatile alternative by effectively stabilizing other forms of nitrogen, including urea, UAN and liquid manure. 
To calculate the profit your customers can achieve with an application of Instinct and N-Serve, visit MaxInMaxOut.com or contact your Dow AgroSciences sales representative.  
*Assuming $3/bu. corn and based on 20 Dow AgroSciences internal field trials from 2015, resulting in an average of 7 bu./A yield increase.
**Wolt, J.D. 2004. A meta-evaluation of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the midwestern USA. Nutr. Cycl. Agroecosyst. 69:23–41. doi:10.1023/B:FRES.0000025287.52565.99.
®Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow. Instinct is not registered for sale or use in all states. Contact your state pesticide regulatory agency to determine if a product is registered for sale or use in your state. Do not fall-apply anhydrous ammonia south of Highway 16 in the state of Illinois. Always read and follow label directions. 

NIMET PREDICTS LIVESTOCK DISEASE OUTBREAKS

Livestock population especially in the northern part of the country may suffer water stress and outbreak of heat-related diseases this year, particularly in the early months due to the expected warmer-than-normal conditions predicted by the Nigerian Meteorological Agency (NiMet) in the 2017 Seasonal Rainfall Prediction (SRP).
The new Director-General (DG) of NiMet, Prof. Sani Abubakar Mashi, said the expected heat stress is likely to persist throughout the year.
Prof. Mashi advised farmers to arrange for alternative sources of water for their livestock during the period.
“The relevant authorities should also encourage farmers to adopt international best practices in animal husbandry through provision of ranches and fodder for livestock as well as ensuring controlled grazing of animals to reduce clashes among farm owners and herdsmen,” the DG noted.
He, however, pointed out that this year, herders may be able to take to grazing in the northern part of the country and may have feed available for longer time due to higher than normal rains.
It was also predicted that “food production is expected to be less than normal due to shorter growing season length over large parts of the country.”
Crop farmers across the country, especially in the north, were advised to plant early maturing and drought resistant varieties to avoid the dangers of the predicted longer days of dry spells.
The Special Adviser to Katsina State Governor on Agriculture, Dr. Abba Y. Yakubu, advised farmers, state governments and other stakeholders to heed the veritable scientific predictions of NiMet to ensure food security in the nation.

Tuesday 28 March 2017

NIGERIA: BETTER WAYS TO FARM YAM – RESEARCHER

Yam is one of the nation’s most valuable tuber crops. The demand for yam is generally very high in Nigeria.
In some societies in Nigeria, festivals are staged to mark the beginning of yam harvest while some use yam in fertility and marriage ceremonies.
The Minister for State, Federal Ministry of Agriculture, Senator Heineken Lokpobiri, said at the launch of the maiden set of improved certified seed yams (a 5-year $12 million research programme funded by the Bill and Mellinda Gate Foundation to improve yam seed) last year in Abuja, that yam is cultivated on 3 million hectares of land annually with the certified seed yam capable of generating N2.4billion if sold for N20 each.
He added that “about 48 million tonnes of the tubers are produced annually in the sub-region on 4 million hectares of land. Nigeria alone produces 36 million tonnes on 3 million hectares of land annually accounting for 68% of global production being the world’s largest producer.”
Dr. Nwaogu Edward Ngozi, Head of Station, National Root Crops Research Institute, Nyanya Sub-Station in Abuja, advised farmers to take note of important factors before planting yam.
Site selection:
He stated that yam grows well on upland soils. Being a high nutrient demanding crop, yam requires a soil that is deep, free draining, and relatively high to medium in fertility with loamy sand or clay loam characteristics. Good soil drainage is essential for optimum yields of the crop. Heavy clay soils tend to water-log in the rainy season and are liable to cause tuber rot. Infertile soils are not recommended for yam production because such soils are unable to retain sufficient water or nutrients to produce reasonably-sized tubers. Also, soils that have high amounts of gravels or stones are unsuitable as they constitute a barrier to tuber penetration and root anchorage.

Monday 27 March 2017

NIGERIA: TOMATO UNION SEEKS CBN’S INTERVENTION IN RAW MATERIALS SOURCING

Worried about their inability to access triple concentrates needed to produce tomato paste, Tomato Union of Nigeria (TUN) has sought the intervention of the Central Bank of Nigeria (CBN) in aiding access to raw materials through its foreign exchange policy.
Spokesman for the Union and Managing Director, Sonia Foods Industries Limited, Nnamdi Nnodebe, said the present forex policy continues to encourage smuggling of inferior tomato paste brands through the borders.
“The only way to save the industry is for CBN to either remove tomato paste triple concentrate from the FX policy restrictions or provide the raw materials in question to the industry; if the local producers of tomato paste get the raw materials directly from CBN this would save the industry from collapse and also help the government avoid creating more job loss.”
“It is no more profitable to produce locally hence the closures. How do you expect producers of tomato paste in Nigeria to compete with their foreign counterparts that have uninterrupted power supply, good roads and distribution network, subsidised loans from their governments. The major material used by the local brands, triple concentrate, has been taken away through this Forex policy” Nnodebe lamented.
Tomato Paste Triple Concentrate is a crucial ingredient used to process consumer products such as packs of tomato paste, ketchup, sauces, among others.
Hitherto, stakeholders had emphasised the need for government to recognize the necessity of the packing industry as an essential component of the tomato paste value chain, without which there can be no link between the farmer and the final consumer.
Nnodebe said: “Christmas and New Year celebrations were dry and if you can remember, we predicted this because you cannot talk about the Christmas or New Year rice and stew without talking about tomato both fresh and paste, as most people use both to bring out the best in their cooking. So many people couldn’t afford tomato products during the festive season and if the FX policy is not lifted Easter celebrations will be the same.”