"We have identified four recessive mutants that lead to reduced and uneven flower clusters," said Pu Huang, Ph.D., the lead author of the paper. "By ultimately identifying the gene in green foxtail we identified a new determinant in the control of grain yield that could be crucial to improving food crops like maize."
The grass Setaria has been proposed as a model for food and bioenergy crops for its short stature and rapid life cycle, compared to most bioenergy grasses. After constructing a mutant population resource for the grass, the Brutnell lab screened 2,700 M2 families, deep sequenced a mutant pool to identify the causative mutation and confirmed a homologous gene in maize played a similar role.
"Identifying this new player in panicle architecture may enable the design of plants with either enhanced or reduced panicle structures," stated Brutnell. "For instance, maize breeding has selected for reduced male panicles, also known as tassels, to reduce shading in the field while still producing sufficient pollen. However, grain yields in sorghum are directly related to the architecture of the panicle. By showing that this gene influences panicle architecture in Setaria and maize, we have expanded the tool box for breeders."
At the Danforth Center, plants hold the key to discoveries and products that will enrich and restore both the environment and the lives of people around the globe. Brutnell's lab research includes the search for the next generation of biofuels: alternative sources of energy that are affordable, sustainable and ecologically sound. The research develops novel computational tools and model systems to identify genes that will improve yield in crops through enhanced photosynthesis. BY DONALD DANFORTH.
No comments:
Post a Comment